The human Rad9/Rad1/Hus1 damage sensor clamp interacts with DNA polymerase beta and increases its DNA substrate utilisation efficiency: implications for DNA repair.
نویسندگان
چکیده
In eukaryotic cells, checkpoints are activated in response to DNA damage. This requires the action of DNA damage sensors such as the Rad family proteins. The three human proteins Rad9, Rad1 and Hus1 form a heterotrimeric complex (called the 9-1-1 complex) that is recruited onto DNA upon damage. DNA damage also triggers the recruitment of DNA repair proteins at the lesion, including specialized DNA polymerases. In this work, we showed that the 9-1-1 complex can physically interact with DNA polymerase beta in vitro. Functional analysis revealed that the 9-1-1 complex had a stimulatory effect on DNA polymerase beta activity. However, the presence of 9-1-1 complex neither affected DNA polymerase lambda, another X family DNA polymerase, nor the two replicative DNA polymerases alpha and delta. DNA polymerase beta stimulation resulted from an increase in its affinity for the primer-template and the interaction with the 9-1-1 complex stimulated deoxyribonucleotides misincorporation by DNA polymerase beta. In addition, the 9-1-1 complex enhanced DNA strand displacement synthesis by DNA polymerase beta on a 1 nt gap DNA substrate. Our data raise the possibility that the 9-1-1 complex might attract DNA polymerase beta to DNA damage sites, thus connecting directly checkpoints and DNA repair.
منابع مشابه
The human checkpoint sensor and alternative DNA clamp Rad9-Rad1-Hus1 modulates the activity of DNA ligase I, a component of the long-patch base excision repair machinery.
The human checkpoint sensor and alternative clamp Rad9-Rad1-Hus1 can interact with and specifically stimulate DNA ligase I. The very recently described interactions of Rad9-Rad1-Hus1 with MutY DNA glycosylase, DNA polymerase beta and Flap endonuclease 1 now complete our view that the long-patch base excision machinery is an important target of the Rad9-Rad1-Hus1 complex, thus enhancing the qual...
متن کاملThe human checkpoint sensor Rad9–Rad1–Hus1 interacts with and stimulates NEIL1 glycosylase
The checkpoint protein Rad9/Rad1/Hus1 heterotrimer (the 9-1-1 complex) is structurally similar to the proliferating cell nuclear antigen sliding clamp and has been proposed to sense DNA damage that leads to cell cycle arrest or apoptosis. Human (h) NEIL1 DNA glycosylase, an ortholog of bacterial Nei/Fpg, is involved in repairing oxidatively damaged DNA bases. In this study, we show that hNEIL1 ...
متن کاملThe checkpoint clamp, Rad9-Rad1-Hus1 complex, preferentially stimulates the activity of apurinic/apyrimidinic endonuclease 1 and DNA polymerase β in long patch base excision repair
Growing evidence suggests that the Rad9-Rad1-Hus1 complex (the 9-1-1 complex), besides its functions in DNA damage sensing and signaling pathways, plays also a direct role in various DNA repair processes. Recent studies have demonstrated that the 9-1-1 complex physically and functionally interacts with several components of the base excision repair (BER) machinery namely DNA polymerase beta (Po...
متن کاملStructure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes
The repair of damaged DNA is coupled to the completion of DNA replication by several cell cycle checkpoint proteins, including, for example, in fission yeast Rad1(Sp), Hus1(Sp), Rad9(Sp) and Rad17(Sp). We have found that these four proteins are conserved with protein sequences throughout eukaryotic evolution. Using computational techniques, including fold recognition, comparative modeling and g...
متن کاملBiochemical Characterization of DNA Damage Checkpoint Complexes: Clamp Loader and Clamp Complexes with Specificity for 5′ Recessed DNA
The cellular pathways involved in maintaining genome stability halt cell cycle progression in the presence of DNA damage or incomplete replication. Proteins required for this pathway include Rad17, Rad9, Hus1, Rad1, and Rfc-2, Rfc-3, Rfc-4, and Rfc-5. The heteropentamer replication factor C (RFC) loads during DNA replication the homotrimer proliferating cell nuclear antigen (PCNA) polymerase cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 32 11 شماره
صفحات -
تاریخ انتشار 2004